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A B S T R A C T   

Emergency recovery plan selection (ERPS) is critical for managing post-disaster recovery and 
ensuring long-term societal stability. However, current multi-attribute decision-making (MADM) 
research on ERPS is limited and lacks consideration of Pareto-optimal solutions and expert 
consensus resulting from multi-stakeholder involvement. Therefore, this study proposes a hybrid 
Dynamic Grey Relation Analysis and Partial Ordinal Priority Approach (DGRA-POPA) model for 
ERPS. The proposed approach employs stable and easily accessible ranking data as inputs. DGRA 
is first utilized to extract consistency in attribute preferences among experts and serves as the 
basis for determining expert rankings. Considering expert consensus and information distribution, 
preference modification coefficients are derived and embedded into POPA. Through decision- 
weight optimization, partial-order cumulative transformation, and dominance structure genera-
tion, the weights for experts, attributes, and alternatives are determined along with a Hasse di-
agram. This diagram offers Pareto-optimal and suboptimal alternatives and alternative clustering 
information. The proposed approach is demonstrated using the ERPS after the Manchester Sta-
dium attack. Sensitivity and comparative analyses with ten different MADM methods validate the 
effectiveness. Overall, the proposed approach enhances ERPS transparency, stability, and 
robustness by identifying Pareto-optimal alternatives while considering expert consensus and 
information distribution.   

1. Introduction 

In contemporary society, people are confronted with a diverse and recurrent array of disaster threats stemming from natural, 
anthropogenic, or compounded factors that exert extensive and far-reaching effects [1]. In this high-risk environment, selecting the 
appropriate emergency recovery plans is crucial for emergency decision-making (EDM), transcending mere temporary solutions in the 
aftermath of disasters and entailing pivotal strategic choices that affect long-term societal stability and sustainable development. 
Emergency recovery plan selection (ERPS) presents several challenges. First, the efficacy of disaster emergency recovery plans remains 
elusive to precise capture or measurement through evaluation attributes [2]. Second, ERPS necessitates the consideration of consensus 
and discord among various stakeholders who usually have divergent goals, values, and prioritized factors and frequently encounter 
intricate coordination and tradeoffs in achieving consensus [3]. Thus, ERPS embodies immediate measures to address prevailing di-
sasters and crucial strategic decisions that demand comprehensive consideration of long-term development and societal welfare. In 
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such situations, multi-attribute decision-making (MADM) is promising as an approach for addressing ERPS. MADM techniques can 
effectively address complex decision problems involving conflicts among attributes, diverse data formats, high uncertainty, and the 
involvement of multiple stakeholders [4]. Specifically, for ERPS, the optimal plan from among all feasible emergency recovery plans is 
possible to identify by utilizing MADM techniques and considering various decision attributes. 

The extensive use of MADM methods in EDM has led to studies on their application in diverse scenarios, such as emergency logistics 
planning and evaluation, emergency supplier selection, emergency capacity evaluation, and emergency operation decision-making. 
The present research on EDM primarily relies on classical MADM methods, such as GRA [5,6], TOPSIS [5], VIKOR [7], TODIM 
[8,9], ELECTRE [10], BWM [9,11], MARCOS [12], and MABAC [13]. Most studies rely on decision data based on expert opinions, such 
as subjective linguistic values, evaluation scores, and pairwise comparison values, to address the challenge of acquiring objective data 
in EDM [4]. To effectively handle the ambiguity and uncertainty in expert subjective opinions, some studies have adopted the grey 
system theory [14], fuzzy set theory [10,15] and rough set theory [13,16] to process expert opinions. These studies typically utilize 
weighting methods (e.g., AHP [17], DEMATEL [18], and BWM [9,11]) to determine the weights of experts and attributes beforehand. 
Subsequently, algebraic logic, such as weighted and fuzzy averages, is applied to aggregate expert opinions. Few studies have 
considered expert consensus and information distribution in expert opinion aggregation to account for the involvement of multiple 
stakeholders [19,20]. 

A literature review shows that the focus on ERPS is relatively limited in EDM. However, ERPS differs significantly from other 
emergency decisions, as it involves long-term strategic considerations and complex systemic impacts. Furthermore, current research 
on MADM in EDM commonly overlooks potential Pareto-optimal solutions (i.e., partial-order relations among alternatives) in decision- 
making [21]. This is because MADM methods often project multiple attributes onto a comprehensive evaluation attribute, leading to 
total-order ranking results. However, Pareto-optimal solutions can effectively enhance the transparency, stability, and robustness of 
decision-making, which is crucial for addressing uncertainties in ERPS. Notably, the empirical evidence shows that ranking data can 
perform well in the face of high uncertainty [22]. Ranking data are more stable and easier to obtain than other types of subjective 
decision data. Ranking data only require experts to answer which alternative is better without specifying the degree. Therefore, 
incorporating ranking data into ERPS as decision data is a promising approach. 

The Ordinal Priority Approach (OPA) is a novel MADM technique based on linear programming [23]. This approach utilizes 
ranking data reflecting expert preferences as decision data, which can be considered a potentially powerful basis for addressing ERPS 
within the context of MADM. By solving a linear programming model, this approach can simultaneously determine the weights for 
experts, attributes, and alternatives by applying alternative weights used for ranking. The advantages of this approach are its ability to 
dispense with data standardization, expert opinion aggregation, and predetermined weights, making it a comprehensive MADM 
method capable of assigning weights and ranking alternatives. Currently, OPA and its extensions have been applied in areas such as 
blockchain technology evaluation [24], supplier selection [25], and project portfolio selection [26]. However, the current focus of OPA 
and its extensions is on improving the ability to address uncertainty in decision data, leaving a research gap regarding expert consensus 
and information distribution. In addition, similar to most MADM methods, OPA overlooks the potential Pareto-optimal solutions in 
decision-making. 

Given the practical demand for ERPS and the current status of MADM in EDM, and OPA in particular, this study proposes a new 
MADM method for ERPS with the following features: (1) utilizing more readily available and stable ranking data as input, (2) elim-
inating the need for data standardization or predetermined weights, (3) considering expert consensus and information distribution, 
and (4) being capable of identifying potential Pareto-optimal solutions. Therefore, this study proposes hybrid Dynamic Grey Relation 
Analysis (DGRA) and Partial Ordinal Priority Approach (POPA) models for ERPS under a group decision-making scenario. The hybrid 
DGRA-POPA model integrates DGRA to extract data on expert consensus and information distribution on attributes more accurately 
than traditional Grey Relation Analysis (GRA), forming a reference for expert ranking. By incorporating preference modification 
coefficients derived from expert consensus and information distribution, the modified POPA determines how to weight experts, at-
tributes, alternatives, and the dominance structure among the alternatives. Notably, the dominance structure of alternatives, called a 
Hasse diagram, can provide insights into Pareto-optimal and suboptimal alternatives and alternative clustering information. This study 
showcases the application of the model in selecting post-disaster recovery plans after the Manchester Stadium attack, accompanied by 
sensitivity and comparative analyses to validate its effectiveness. 

The remainder of this paper is organized as follows: Section 2 reviews the literature on the MADM method in ERPS. Section 3 
presents the hybrid DGRA-POPA model. Section 4 presents an ERPS of the Manchester Stadium attack as an illustrative example of the 
proposed approach. Section 5 validates the proposed approach. Section 6 discusses the managerial implications, advantages, and 
insights relevant to the proposed approach. Finally, Section 7 presents the conclusions and outlines directions for future research. 

2. Literature review 

EDM aims to effectively plan resources, organize actions, improve disaster prevention and emergency response efficiency, mini-
mize losses, and ensure public safety [27]. Achieving this goal requires crucial support from scientific EDM technology. Over the past 
decade, MADM has emerged as a beneficial tool in the EDM field. Furthermore, MADM is considered a powerful tool for addressing 
complex decision-making problems and can handle challenges such as goal conflicts, data diversity, and the high uncertainty inherent 
in EDM [4]. Current research on MADM in EDM mainly focuses on emergency capability evaluation, emergency logistics and facility 
planning, emergency supplier selection, and emergency response plan selection. These studies primarily adopted classic MADM 
methods, such as GRA [5,6], TOPSIS [5], VIKOR [7], TODIM [8,9], ELECTRE [10], BWM [9,11], MARCOS [12], and MABAC [13]. 

Regarding decision data, given the challenges in obtaining data for EDM, few studies to date have utilized objective decision data 

R. Wang                                                                                                                                                                                                                 



Information Sciences 677 (2024) 120784

3

[12,28]. Most studies synthesize expert opinions in the form of subjective linguistic values [5,6,8], subjective evaluation scores 
[19,20], and subjective pairwise comparison values [7,9]. For example, Wang et al. [9] assessed the optimal solutions in a multi-
department emergency collaboration within a multi-granularity extended probabilistic linguistic term set framework using the BWM- 
TODIM approach. Saner et al. [7] evaluated the hospital emergency capabilities in various contexts based on the Bayesian BWM- 
VIKOR. Su et al. [8] applied the TODIM method, which integrates probabilistic linguistic term sets and prospect theory for emer-
gency supplier selection. Furthermore, considering the lack of relevant information or specialized expertise in specific contexts among 
experts, several studies have improved input data quality using grey system theory [14], fuzzy set theory [10,15] and rough set theory 
[13,16]. Wang et al. [28] used WSR methodology to assess the locations of emergency medical facilities by applying the TOPSIS-BWM 
method based on interval type-2 fuzzy sets. Zhang et al. [6] introduced a novel approach utilizing spherical fuzzy sets as model inputs 
and established a spherical fuzzy GRA based on the CPT method for emergency supplier selection. Additionally, Liu et al. [10] pro-
posed an integrated decision-support model combining a double-hierarchy hesitant fuzzy linguistic term set with the ELECTRE II 
method to address the issue of emergency supplier selection. 

In terms of weight acquisition, the current MADM in EDM mainly utilizes weighting methods, such as AHP [17], DEMATEL [18], 
and BWM [9,11], to obtain expert and attribute weights in advance. Subsequently, averaging techniques such as weighted, geometric, 
and fuzzy averages are employed to aggregate expert opinions. However, this approach only assimilates expert opinions based on 
algebraic logic and fails to reflect individual expert opinions accurately [23]. Numerous studies have consider decision-makers’ risk 
preferences to incorporate prospect theory and regret theory into the EDM process [6,29]. However, few studies have considered 
incorporating expert consensus into the EDM to handle multiple stakeholder involvement [19,20]. Liu et al. [19] proposed a dynamic 
consensus model utilizing a dual-trust relationship-based social network (DTRSN) for emergency response plan selection, and by 
employing a fuzzy clustering feedback mechanism, Li et al. [20] adjusted the expert consensus and integrated the TOPSIS method to 
achieve optimal emergency response plan selection. 

Notably, although the issue of ERPS in the field of emergency management is equally crucial, substantial research is lacking. ERPS, 
as part of post-disaster long-term strategy selection, possesses distinct characteristics compared to other EDM. Specifically, emergency 
recovery plans focus more on long-term recovery, reconstruction, and enhancement, necessitating the consideration of more complex 
factors and long-term effects [30]. This amplifies the uncertainties for experts when assessing the long-term performance of emergency 
recovery plans based on evaluation attributes, thus requiring more flexible and robust approaches to reach a resolution. An ERPS 
involves multiple stakeholders with diverse interests and perspectives [3]. When formulating recovery plans, seeking expert consensus 
amid stakeholder needs and expectations is imperative to ensure these plans are feasible and sustainable. However, current ERPS 
research lacks sufficient consideration of expert consensus and the characteristics of information distribution among expert groups. 
Additionally, analyzing the Pareto-optimal alternatives within the ERPS can enhance the stability and transparency of decision out-
comes [31]. Pareto-optimal alternatives aid in comprehending and balancing the tradeoffs among evaluation attributes and the po-
tential for achieving optimal outcomes under diverse circumstances. Thus, when addressing unforeseen scenarios or uncertainties in 
ERPS, opting for a particular solution among Pareto-optimal alternatives may offer superior coping capabilities in one or more aspects. 
Nevertheless, this analytical aspect has been overlooked in the current MADM research in EDM. 

Opting for more stable and readily available ranking data as decision data for MADM has emerged as a promising way of addressing 
ERPS. Some studies have indicated that establishing dominant relationships (ranking data) among alternatives is easier and more 
reliable than establishing subjective semantic values, evaluation scores, and comparative values [22]. This is because experts only need 
to answer “which one is better” without determining the extent of their differences [23]. 

Therefore, this study is based on a novel MADM technique, the OPA, with ranking data as the model input for addressing the ERPS 
[23]. This approach is applicable across various MADM scenarios, enabling the determination of weights and rankings for experts, 
attributes, and alternatives in both the group and individual decision processes [25]. It concurrently resolves a linear programming 
model and derives weights and rankings for experts, attributes, and alternatives [32]. Compared with methods such as FUCOM [33], 
LBWA [34], and DIBR [35], OPA is a more versatile approach that addresses the problems of attribute and expert weight acquisition 
and alternative ranking in MADM. In addition, unlike ranking methods like TODIM [9], MARCOS [12], and MABAC [13], OPA does 
not require data standardization, expert opinion aggregation, or pre-obtained weights for experts and attributes. This holds great 
potential for decision scenarios with limited objective data and high uncertainty, particularly in ERPS. Currently, extensions of OPA 
primarily focus on enhancements in handling uncertainty in expert opinions, including robust OPA [26], grey OPA [25], fuzzy OPA 
[32,36], and rough-set OPA [37]. Although TOPSIS-OPA has been applied to address large-scale group decision problems, its main 
emphasis remains on addressing missing values in group decision-making [38]. However, pertinent research is lacking on expanding 
OPA to consider expert consensus and information distribution. Moreover, a research gap exists in the consideration of potential 
Pareto-optimal solutions in decision-making with respect to OPA. 

Considering the characteristics of ERPS and the current research status of MADM in EDM, particularly focusing on the gaps in OPA, 
this study proposes an extended OPA model suitable for ERPS. The model should effectively identify potential Pareto-optimal solutions 
while considering expert consensus and information distribution. Furthermore, the proposed approach should effectively address the 
high uncertainty and multi-stakeholder participation issues in ERPS, while enhancing decision transparency, stability, and robustness. 

3. Methodology 

This section focuses on elucidating the theoretical background and deriving the proposed hybrid DGRA-POPA model. An overview 
of the notations used in the proposed approach is provided in Table 1. 
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3.1. Dynamic grey relation analysis 

GRA was introduced by Julong Deng in the 1980s and is a pivotal component of grey system theory [39]. GRA is applicable when 
data are incomplete and exhibit substantial uncertainty, as it identifies the correlation among variables to reveal inherent patterns and 
trends. However, most current research on GRA commonly adopts an arbitrary approach by setting one of its key parameters (i.e., the 
distinguishing coefficient) to 0.5. This setting lacks an adequate theoretical foundation or validation reflecting a conventional 
empirical practice [40]. Therefore, DGRA, proposed by Javed et al. [41] is a novel GRA model that utilizes an objective optimal 
dynamic distinguishing coefficient estimation technique. Unlike traditional GRA models, DGRA employs an objective technique to 
estimate the optimal distinguishing coefficient, thereby addressing the subjective selection by decision-makers of the value 0.5. 
Therefore, DGRA is employed to enhance POPA by deriving and integrating expert preference consensus and information distribution. 
This operation facilitates the acquisition of more accurate information regarding expert consensus than the traditional GRA methods. 

Initially, a reference series is constructed in this study that reflects experts’ collective preferences. Given that the decision data for 
the proposed approach comprise ranking data, this study employs the commonly utilized rank order centroid (ROC) weights to 
amalgamate expert preferences [42]. Specifically, experts’ attribute preferences are leveraged as a benchmark by employing ROC- 
weighted voting to form a series that represents expert preferences for attributes. The rationale for utilizing ROC weights lies in 
their utilization of ranking data, which aligns with the input data format of the proposed approach. Moreover, ROC demonstrates 
superior accuracy compared to other rank-ordered methods, such as RS, RR, and EW. Furthermore, it exhibits a high correlation with 
the outcomes of precise numerical methods. The ROC weights for each ranking are computed based on Eq. (1) as follows: 

wROC
r =

1
n
∑n

k=r

1
k

∀r ∈ [n] (1)  

where r is the ranking index and n is the number of attributes. 
Given the comparison ranking series of attributes provided by each expert RC =

(
rc1k,…, rcjk,…rcnk

)
,∀k ∈ E, the frequency of the 

attribute rankings across the expert group is computed. Finally, these statistics undergo ROC-weighted summation and ranking to 

derive a reference series RC* =
(

rc*
1,⋯, rc*

j ,⋯, rc*
n

)
reflecting the expert group’s attribute preferences. 

The grey relational variator within the DGRA, which is the core factor leading to changes in the dynamic distinguishing coefficient, 
is subsequently identified. The grey relational variator contains a local form for each alternative (denoted as φjk) and a global form for 
all alternatives (denoted as ϕj). Given the reference series RC* and the comparison series RC, the local grey relational variator (φjk) is 
determined using Eq. (2) as follows: 

φjk =
|rc*

j − rcjk

⃒
⃒
⃒

maxkmaxj

⃒
⃒
⃒rc*

j − rcjk

⃒
⃒
⃒

∀j, k (2) 

Table 1 
Nomenclature.  

Type Notation Definition 

Index i Index of alternatives (1,…, i,…,m)

j Index of attributes (1,…, j,…,n)
k Index of experts (1,…,k,…,p)

Parameter rek Ranking of the expert k 
rcjk Ranking of the attribute j given by the expert k 
raijk Ranking of the alternative i on the attribute j given by the expert k 

Set A Set of alternatives ∀i ∈ A 
C Set of attributes ∀j ∈ C 
E Set of experts ∀k ∈ E 

Variable wROC
r Rank order centroid weight assigned to the ranking r 

φjk Local grey relational variator of the expert k of the attribute j 
ϕj Global grey relational variator of the attribute j 
ξj Dynamic distinguishing coefficient of the attribute j 
h Continuous multiplier of dynamic distinguishing coefficient 
γk Dynamic grey relational coefficient of the expert k on the attribute j 
Γk Dynamic grey relational grade of the expert k 
Z Objective function 
Wra

ijk Weight of the alternative i for the attribute j with the ranking of raijk under the preferences of the expert k 
Partial-order 

theory-related notation 
(A,≼POCT) Partial-order cumulative transformation set (POCTS) of alternatives 
PRPOCT POCTS in binary matrix form 
A+

i,POCT Upper set of the alternative i of POCTS 
A−

x,POCT Lower set of the alternative i of POCTS 

A∕=

x,POCT 
Incomparable set of the alternative i of POCTS 

GSPOCT General skeleton matrix of POCTS  
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The global grey relational variator (ϕj) is the average of the local grey relational variators (φjk) among the experts, as shown in Eq. 
(3): 

ϕj =
1
m

∑m

k=1
φjk ∀j (3) 

Essentially, the dynamic distinguishing coefficient (ξj) is the unique scaling of the global grey relational variator (i.e., ξj = hϕj), in 
which the unique continuous multiplier (h) defines the relative position of each coefficient in the dynamic distinguishing coefficient 
(ξj). 

Lemma 1. [41]. If 0⩽ϕj⩽1, then ϕj⩽ξj⩽(1 + b)ϕj, where b ∈ R+. 
According to Lemma 1, the unique continuous multipliers h ∈ [1, 1+b] and b = 1 provide sufficient space for the dynamic distinguishing 

coefficient (ξj) to reasonably distinguish between high- and low-variance data. 

Therefore, when calculating the optimal dynamic distinguishing coefficient, the optimal value of the continuous multiplier (h) 
formed during the iterative process must be estimated. The precise optimal value of the continuous multiplier (h) is calculated by 
solving the linear programming model shown in Eq. (4) as follows: 

max
∑n

j=1
ξj

s.t. ξj = hϕj ∀j

ϕj =

1
m

⃒
⃒
⃒rc*

j − rcjk

⃒
⃒
⃒

max
k

max
j

⃒
⃒
⃒rc*

j − rcjk

⃒
⃒
⃒

∀j

hϕj⩽1 ∀j

h ∈ [1, 2]

(4) 

By solving Eq. (4), the optimal continuous multiplier (h) is obtained, and the dynamic distinguishing coefficient (ξ1, ξ2,⋯, ξn) can 
be calculated accordingly. 

The dynamic grey relational coefficient (γjk) between the reference and comparison series can be calculated with Eq. (5) as follows: 

γjk =
minkminj|rc*

j − rcjk|+ξjmaxkmaxj

⃒
⃒
⃒rc*

j − rcjk

⃒
⃒
⃒

|rc*
j − rcjk|+ξjmaxkmaxj

⃒
⃒
⃒rc*

j − rcjk

⃒
⃒
⃒

∀j, k (5) 

The dynamic grey relational grade (Γk) is calculated from Eq. (6): 

Γk =
1
n
∑n

j=1
γjk ∀k (6) 

The dynamic grey relational grade is a benefit-based indicator and Γk ∈ (0,1], with larger values indicating more important experts 
resulting from group preference consistency. Thus, the experts are ranked based on the dynamic gray correlation grade (Γk) for each 
expert to obtain RE = (re1,…, rek,…, rep). Notably, given that POPA inherently lacks the capability for group decision-making ad-
justments, expert consensus and information distribution reflected by the dynamic grey relational grade are utilized to refine POPA. 

3.2. Partial ordinal priority approach 

POPA is an innovative MADM approach grounded in linear programming, partial-order theory, and graph theory [43]. Specifically, 
it builds upon OPA by integrating partial-order theory, thereby representing a partial-order extension of OPA. Overall, this study 
expands the original OPA model by incorporating considerations of expert consensus and information distribution, further utilizing 
partial-order cumulative transformation and structural generation to identify potential Pareto-optimal alternatives in decision- 
making. The proposed approach calculates the weights of experts, attributes, and alternatives, and generates a Hasse diagram con-
taining the dominance structure of the alternatives. This Hasse diagram provides information on Pareto-optimal alternatives, sub-
optimal alternatives, and hierarchical clustering. 

3.2.1. Weight calculation considering expert consensus and information distribution 
Following the DGRA computation, dynamic grey relational grades (Γk) and expert rankings (RE) based on consensus are derived. 

Consequently, this study further explores the characteristics of information distribution within dynamic grey relational grades to 
enhance the weight calculation process of the original OPA model. This refinement is designed to enhance the accuracy and practi-
cality of the proposed approach in group decision-making. The weight calculation procedure for the proposed approach relies pri-
marily on the original OPA model, as detailed in Appendix B. 
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Initially, this study designs a preference-modification coefficient based on expert consensus and information distribution, which 
can be integrated into the proposed approach. This coefficient can be precisely determined through a linear transformation of the 
dynamic grey relational grades, as shown in Eq. (7). In the proposed approach, the preference modification coefficient serves as a 
crucial parameter for quantifying the extent of expert preference fluctuations. 

ck = (1 − Γk) ×
1.9912

logp
Γk ∈

(

0,1
)

(7)  

where k is the index of the experts, Γk denotes the dynamic grey relational grade of expert k, and p is the number of experts. 

Theorem 1. The value of preference modification coefficients of experts based on dynamic grey relational grades (Γk) can be determined by 
the following linear function: 

ck = (1 − Γk) ×
1.9912

logp
(8)   

Proof of Theorem 1. Given the extreme scenario in which Γk1 = 0.99 and Γk2 = 0.01, the maximum degree of variation in expert 
preferences is depicted. Considering the original OPA model, parameter rek1 of expert k1 with the best ranking (i.e., 1st) equals to 1ck1 , 
and parameter rek2 of expert k2 with the worst ranking (i.e., pth) equals to pck2 . Thus, the objective of the model is to find the maximum 
difference between the input parameters (i.e., 1ck1 and pck2 ) when Γk1 and Γk2 have the maximum variation. Then, the following model 
is then constructed: 

max Z
s.t. 1ck1 × (Γk1 − Γk2 )⩾Z

pck2 × Γk2 ⩾Z
pck2 ⩾1

(9)  

After solving Eq. (9), we obtain: 

pck2 = 98 ⇒ log(pck2 ) = log98 ⇒ ck2 × logp = 1.9912 ⇒ ck2 =
1.9912

logp
(10) 

Therefore, the preference modification coefficient is ck ∈ [0, 1.9912/logp]. Regarding the information distribution of the expert consensus, 
when Γk < 1 − logp/1.9912, the preference modification coefficient has the amplification effect for individual experts, and when 
Γk > 1 − logp/1.9912, it has a suppression effect. Thus, Theorem 2 is proved. 

By incorporating the preference modification coefficient into the original OPA model, a decision-weight optimization model that 
accounts for expert consensus and information distribution is formulated, as shown in Proposition 1. 

Proposition 1. Given the dynamic grey relational grades (Γk) and rankings of experts (rek) and attributes (rcjk) and the alternatives for each 
attribute (raijk) experts provide independently, the decision-weight optimization model considering expert consensus and information distri-
bution is formulated as Eq. (11) as follows: 

max Z

s.t. Z ≤ reck
k

(
rcjk

(
raijk

(
Wra=r

ijk − Wra=r+1
ijk

)))
∀i, j, k

Z ≤ reck
k

(
rcjk

(
raijk

(
Wra=m

ijk

)))
∀i, j, k

∑m

i=1

∑n

j=1

∑p

k=1
Wra

ijk = 1

ck =

(

1 − Γk

)

×
1.9912

logp
∀k

Wra
ijk ≥ 0

(11)  

After solving Eq. (11), Eq. (12) provides the formulations for computing the weights of the alternatives, attributes, and experts. 
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WA
i =

∑n

j=1

∑p

k=1
Wra

ijk ∀i

WC
j =

∑m

i=1

∑p

k=1
Wra

ijk ∀j

WE
k =

∑m

i=1

∑n

j=1
Wra

ijk ∀k

(12) 

Through the derivation process described above, a decision-weight optimization model is developed that is capable of simulta-
neously obtaining the weights of experts, attributes, and alternatives while considering expert consensus and information distribution. 
Compared to other traditional MADM methods, the proposed approach requires no data normalization or pre-acquisition of weight 
techniques. Notably, the preference modification coefficient proposed in Theorem 1 may amplify or suppress the individual expert 
effect. However, when integrating the preference modification coefficient into the decision-weight optimization model described in 
Proposition 1, the relative effects of all expert coefficients are essential to consider. For example, if the preference modification 
coefficients of all experts are generally above a certain threshold, the resulting amplification will be relatively weakened in the de-
cision weight optimization model compared to the impact on an individual expert. This observation underscores the significance of 
accounting for group effects when designing a decision-weight optimization model to ensure the precision and efficiency of the 
decision-making process. 

However, the computed alternative weights merely project numerous attributes onto a single comprehensive evaluation attribute. 
Consequently, the outcomes lack stability when handling scenarios involving potential Pareto-optimal alternatives, which is a common 
challenge in most MADM methods [21]. To address this challenge, in the proposed approach, the weight calculation outcomes undergo 
a partial-order cumulative transformation and structural generation that incorporate information on attribute weights. 

3.2.2. Partial-order cumulative transformation and structural generation 
In the proposed approach, the core of partial-order cumulative transformation and structural generation lies in constructing a 

partial-order set containing attribute weight information. Theoretically, the crucial aspect of this process is ensuring that the newly 
constructed partial-order set maintains order-preserving properties, meaning that the dominant structure of any two alternatives 
within the partial-order set will consistently reflect the relative superiority or inferiority in the original data. In management practice, 
this process should offer greater flexibility than the partial-order set formed based on strict Pareto-optimality conditions for each 
attribute, as well as demonstrate stronger robustness than the total-order set constructed on a single projection comprehensive 
attribute derived from the decision-weight optimization model. Moreover, this process should effectively identify the potential Pareto- 
optimal solutions in the decision-making process. Thus, the fundamental partial-order theory necessary to facilitate the above oper-
ation is introduced in this section. 

Definition 1.. (Partial-order Relation) Let R be a binary relation on set X, denoted as R⊂X × X (R is a subset of the Cartesian product of X 
with itself). R is defined as a partial order relation on set X, if it satisfies the following properties: 

(1) Self-reversibility: R is self-reversible if for ∀x ∈ X, xRx holds. 
(2) Transmissibility: R is transmissible if for ∀x, y, z ∈ X, xRy, yRz ⇒ xRz holds. 
(3) Anti-symmetry: R is antisymmetric if for ∀x, y ∈ X, xRy, yRx ⇒ x = y holds. 

Definition 2.. (Total-order Relation) Partial-order relation R on set X is defined as the total-order relation on the set X if it satisfies the 
strong completeness (i.e., xRy ∨ yRx for ∀x,y ∈ X). 

Notably, the partial-order relation is a relatively flexible relationship, allowing for equivalence between alternatives (i.e., when it is 
impossible to distinguish between superiority or inferiority among them across all considered attributes) or incomparability (i.e., when one 
alternative is superior in specific attributes, while another is superior in others, without sufficient information to judge the overall superiority 
comprehensively). When evaluating alternative set A based on the utility derived from attribute set C, the partial-order and total-order relations 
yield partial-order sets (denoted as (A,≼C)) and total-order sets (denoted as (A,⩽C)), respectively. 

Definition 3.. (Lower Set and Upper Set of Partial-order Set) Given the partial-order set (A,≼C), for ∀x ∈ A, A−
x,C = {y|y≼Cx, y ∈ A} is 

defined as the lower set of X on the partial-order set (A,≼C), whereas A+
x,C = {y|x≼Cy, y ∈ A} is defined as the upper set of X on the partial-order 

set (A,≼C). 

Definition 4.. (Order-preserving Mapping of Partial-order Set) Let (A,≼C1 ) and (B,≼C2 ) be the partial-order set, and function f : A→B is 
the mapping function. If x≼C1 y ⇒ f(x)≼C2 f(y) holds for ∀x, y ∈ A, then function f is defined as the order-preserving mapping of the partial-order 
set (A,≼C1 ). 

Definition 5.. (Inclusion Relation in Partial-order Set) Let A−
x,C1 

and B−
x,C2 

be the lower set of X on the partial-order sets (A,≼C1 ) and 
(B,≼C2 ), respectively. If A−

x,C1
⊆ B−

x,C2 
holds for ∀x ∈ A, then the partial-order set (A,≼C1 ) is the subset of the partial-order set (B,≼C2 ), denoted 

as (A,≼C1 ) ⊆ (B,≼C2 ). 
As the first step of the partial-order cumulative transformation, the weights of the alternatives must be calculated across all attributes, as 

outlined in Eq. (13): 
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WAC
ij =

∑p

k=1
Wra

ijk ∀i, j (13) 

In the total-order set originating from the single-projection comprehensive attribute WA is denoted as (A,⩽SPCA), and the partial-order set 
originating from the strict Pareto-optimality judgment of WAC denoted as (A,≼AC). Notably, the partial-order set based on the strict Pareto- 
optimality condition refers to the formation of a partial-order relationship by directly examining the dominance structure of alternatives 
across all attributes. Subsequently, the partial-order cumulative transformation set of the proposed approach is constructed as shown in 
Definition 5. 

Definition 6.. (Partial-order Cumulative Transformation Set) Given that the attributes in WAC are arranged in descending order by weight 
(i.e., the weight of each attribute obtained from the weight calculation process of the proposed approach is Wj1 ⩾Wj2 ⩾⋯⩾Wjn ), the partial-order 
cumulative transformation weight can be calculated using Eq. (14). Then, the partial-order set originating from the partial-order cumulative 
transformation weight is defined as the partial-order cumulative transformation set (POCTS) of (A,≼AC), denoted as (A,≼POCT): 

WPOCT
ij =

∑l

j=1
Wij ∀l ∈ [n] and ∀i, j (14) 

The expression for the partial-order cumulative transformation weight in the matrix form shown in Eq. (15) as follows: 

WPOCT = WACH =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

WAC
i1 j1 WAC

i1 j1 + WAC
i1 j2 ⋯ WAC

i1 j1 + WAC
i1 j2 + ⋯ + WAC

i1 jn

WAC
i2 j1 WAC

i2 j1 + WAC
i2 j2 ⋯ WAC

i2 j1 + WAC
i2 j2 + ⋯ + WAC

i2 jn

⋮ ⋮ ⋱ ⋮
WAC

imj1 WAC
imj1 + WAC

imj2 ⋯ WAC
imj1 + WAC

imj2 + ⋯ + WAC
imjn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15)  

H =

⎛

⎜
⎜
⎝

1 1 ⋯ 1
0 1 ⋯ 1
0 0 ⋱ ⋮
0 0 0 1

⎞

⎟
⎟
⎠

Comparing the magnitudes of the row vectors of WPOCT yields the POCTS in binary matrix form PRPOCT =
[
prPOCT

i1 i2

]

m×m
, and its element 

prPOCT
i1 i2 

is determined using Eq. (16) as follows: 

prPOCT
i1 i2 =

{
1, if WPOCT

i1 j ⩾WPOCT
i2 j ∀i1, i2 ∈ A and ∀j

0, otherwise
(16)   

Theorem 2. If (A,≼POCT) is the partial-order cumulative transformation set of (A,≼AC), then (A,≼AC) ⊆ (A,≼POCT). 

Proof of Theorem 2. See Appendix B. 

Theorem 3. If (A,≼POCT) is the partial-order cumulative transformation set of (A,≼AC), then for ∀i1, i2 ∈ A, when i1≼Ci2 exists on (A,≼AC), 
WPOCT

i1 j ⩽WPOCT
i2 j holds. 

Proof of Theorem 3. See Appendix B. 
Theorems 2 and 3 confirm that POCTS exhibits order-preserving properties. Notably, the last column of the partial-order cu-

mulative transformation weight is equivalent to WA, which is derived from the decision-weight optimization model that incorporates 
expert consensus and information distribution. Hence, according to Definition 2 of the total-order relationship, (A,≼AC) ⊆

(A,≼POCT) ⊆ (A,⩽SPCA) holds. This articulation theoretically demonstrates that POCTS negotiates a trade-off between partial-order 
relations under strict Pareto optimality and the total-order relation derived from a single projection comprehensive attribute, thus 
forging a more robust dominance structure. 

However, the POCTS in binary matrix form contains redundant information on dominance structures, leading to unnecessary 
complexity and information overload in decision-making. Therefore, this study further optimizes dominance structures through the 
transitivity of partial-order relations and generates a Hasse diagram with dominant hierarchy structures, which can effectively reduce 
information redundancy. Crucially, the generated structure reveals Pareto-optimal alternatives, suboptimal alternatives, and their 
hierarchical clustering information, offering decision-makers a more stable and transparent mechanism for evaluating decision out-
comes. 

Proposition 2. Dominant Hierarchy Extraction of Partial-order Cumulative Transformation Set in Binary Matrix Form. 
Based on Definition 3, the lower, upper, and incomparable set of ∀x ∈ A of POCTS in binary matrix form can be identified by Eq. (17) as 

follows: 
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A−
i1 ,POCT =

{
i2
⃒
⃒
⃒prPOCT

i1 i2 = 1, i2 ∈ A
}

A+
i1 ,POCT =

{
i2
⃒
⃒
⃒prPOCT

i2 i1 = 1, i2 ∈ A
}

A−
i1 ,POCT = A − A−

i1 ,POCT − A+
i1 ,POCT

(17) 

Regarding the dominant hierarchy extraction based on non-dominant ascending, if 
(

A−
i1 ,POCT ∪ {i1}

)
∩
(

A+
i1 ,POCT ∪ {i1}

)
=

(
A−

i1 ,POCT ∪

{i1}
)

holds for i2 ∈ A, then i2 is positioned at the top layer. Subsequently, the rows and columns corresponding to i2 in PRPOCT are deleted. The 

above process is iterated, positioning i2 from top to bottom, until all alternatives in PRPOCT are eliminated. 

To streamline the dominance structure, edge contraction is performed to obtain the general skeleton matrix of POCTS (GSPOCT), as 
shown in Eq. (18). The operations in Eq. (18) are Boolean operations. 

GSPOCT =
(
PRPOCT + I

)’
−
( (

PRPOCT)’ )2
− I (18) 

Finally, the proposed approach derives the Hasse diagram of the dominance structure of the alternatives by substituting a general 
skeleton matrix into the extracted dominant hierarchy. The dominance of alternatives within the general skeleton matrix indicates 
transitivity. The top-level alternatives in the hierarchy represent Pareto-optimal alternatives, and the alternatives at the same level 
show no comparability. 

3.3. Steps of the proposed approach 

This section aims to clarify the operational procedures of the proposed hybrid DGRA-POPA model, as shown in Fig. 1. Based on 
Fig. 1, detailed explanations are provided below for each step. 

Step 1: Identify the experts, attributes, and alternatives in decision-making. This phase involves collecting decision-making data, 
including rankings of attributes and alternatives under each attribute, independently provided by experts. 

Step 2: Calculate the ROC weights for each ranking allocation using Eq. (1). Then, the ROC-weighted sum is computed based on the 
frequency of the attribute ranking to establish the reference sequence RC*, which reflects the expert consensus. Next, determine the 
grey relational variator (φjk and ϕj), dynamic distinguishing coefficient (ξj), and dynamic Grey relational grade (Γk) using Eqs. (2) to 
(6). Finally, sort the experts in descending order of their dynamic grey relational grades to obtain RE. 

Fig.1. The steps of the proposed hybrid DGRA-POPA model.  
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Step 3: Utilize the dynamic grey relational grade (Γk) to calculate the preference modification coefficients (ck) of experts with Eq. 
(7). Formulate and solve Eq. (11) to determine the weight (Wra

ijk) of alternative i for attribute j with the ranking of raijk under the 
preferences of expert k. Finally, calculate the weights of experts, attributes, and alternatives (WE,WC,WA) according to Eq. (12). 

Step 4: Apply partial-order cumulative transformation according to Eqs. (13) to (15). Construct the POCTS in binary matrix form 
(PRPOCT) using Eq. (16). Extract the dominant hierarchy based on Proposition 2 and derive the general skeleton matrix (GSPOCT) of the 
POCTS using Eq. (18). Finally, substitute the general skeleton matrix (GSPOCT) into the extracted dominant hierarchy to generate the 
Hasse diagram of alternatives. 

4. Case study 

4.1. Case description 

This study utilizes the ERPS of the Manchester Stadium attack as a case study to showcase and validate the proposed hybrid DGRA- 
POPA model. Manchester Stadium, a top-tier sports arena, has cutting-edge facilities that accommodate up to 75,000 spectators. 
However, on the evening of May 22, 2017, a tragic terrorist attack occurred at Manchester Stadium when a suicide bomber detonated 
an explosive device within the stadium premises after a music concert, resulting in 22 deaths and over 500 injuries. This attack is 
regarded as one of the most severe terrorist assaults in the UK in recent years, prompting global attention and condemnation and 
sparking more comprehensive discussions on terrorism worldwide. 

The “Manchester Stadium Inquiry Volume Two: Emergency Response” report highlights numerous shortcomings across the 
response protocols of emergency service agencies [44]. First, deficiencies arise from leadership aptitude and command training. 
Consequently, insufficiencies can be observed in refining emergency response procedures, fostering interagency collaboration, 
ensuring ample medical equipment, and facilitating effective information exchange. Additionally, deficiencies linked to the Operation 
Plato initiative involve inadequate training, unclear role delineation, and mishandled media interactions. Following the report 
analysis, ten emergency recovery plans were devised to address the identified issues and recommend improvements for emergency 
response at Manchester Stadium, as presented in Table C1. These plans include emergency healthcare administration, information 
management, procedural enhancements, and personnel training. Key ERPS stakeholders are the Greater Manchester Resilience Forum, 
Greater Manchester Police, North West Ambulance Service, British Transport Police, and North West Fire Control. 

4.2. Attributes for emergency recovery plan selection and data collection 

This study utilizes a literature analysis method to systematically identify attributes for evaluating emergency recovery enhance-
ment plans for Manchester Stadium. These attributes evaluate recovery plans from the perspectives of enhancing emergency capa-
bilities and intrinsic attributes. Table 2 summarizes the attributes, related descriptions, and references that should be considered when 
selecting emergency recovery plans. Regarding emergency capacity enhancement, the research has increasingly emphasized the 
crucial role that resilience plays in emergency management when facing highly uncertain, dynamic, and complex disasters. The widely 
accepted 4R resilience theory subdivides a system’s recovery capabilities into robustness, redundancy, speed, and resourcefulness. 
Thus, this study utilizes the 4R resilience theory as a guiding framework for the ERPS. Moreover, the inherent attributes of these plans, 
such as feasibility and cost-effectiveness, are commonly regarded as pivotal. Furthermore, sustainability must be considered when 
choosing emergency recovery plans. As underscored at the United Nations’ 2016 World Humanitarian Summit, a significant interplay 
and correlation exist between humanitarian actions and Sustainable Development Goals. Given these factors, establishing sustainable 
long-term emergency recovery plans becomes exceedingly imperative. After identifying the plans and attributes, five decision-making 
experts representing critical stakeholders, are engaged to offer their rankings of attributes and plans as input data for the proposed 
approach, as presented in Table D1 and D2. 

Table 2 
Attributes for emergency response plan selection.  

Measurement Attribute Description Reference 

Emergency capability 
enhancement 

Robustness The plan ensures consistent and dependable execution of emergency response plans across 
diverse situations. 

[45,46] 

Redundancy The plan improves adaptability in addressing diverse unforeseen events within the emergency 
response. 

Rapidity The plan enhances the efficiency and speed of the emergency response. 
Resourcefulness The plan enhances the availability of essential supplies, personnel, and other resources 

required for the emergency response. 
Inherent attribute Feasibility The practicality and feasibility of plan implementation in real-world settings. 

Cost- 
effectiveness 

The equilibrium between implementation costs and achieving the desired benefits of the plan. 

Sustainability The sustainability and stability of long-term plan implementation.  
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4.3. Results analysis 

According to Step 1, the reference series of attribute rankings derived from expert consensus is determined as follows: 

RC* = (2, 6,1, 5,3, 4,7) (19) 

Based on Eq. (3), in Step 2, the global grey relational variator (ϕj) corresponding to each attribute can be calculated as follows: 

ϕj = (0.3000,0.3000,0.2500, 0.3000, 0.4000,0.5000, 0.3500) (20) 

A linear programming model is constructed to compute the optimal dynamic distinguishing coefficient (ξj) and continuous 
multiplier (h) according to Eq. (4) as follows: 

max ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7
s.t. ξ1 = 0.3000 × h; ξ2 = 0.3000 × h; ξ3 = 0.2500 × h; ξ4 = 0.3000 × h

ξ5 = 0.4000 × h; ξ6 = 0.5000 × h; ξ7 = 0.3500 × h
ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7⩽1
1⩽h⩽2

(21) 

This was obtained by solving Eq. (21); the continuous multiplier h = 2 and the optimal dynamic distinguishing coefficients for each 
attribute are shown in Eq. (22) as follows: 

ξj = (0.6000, 0.6000,0.5000,0.6000,0.8000,1.0000,0.7000) (22) 

The dynamic grey relational grade of each expert (Γk) is calculated according to Eqs. (5) and (6). 

Γk = (0.6360,0.7752,0.7676,0.6526,0.7809) (23) 

Fig.2. The weight calculation results of the ERPS case study.  
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The expert ranking is obtained accordingly as RE = (5,2,3,4,1). 
According to Eq. (7), in Step 3, the preference modification coefficient is determined as follows: 

ck = (1.0369,0.6403, 0.6622,0.9898,0.6241) (24) 

The findings reveal notably higher dynamic grey relational grades for E2, E3, and E5, with scores of 0.7752, 0.7676, and 0.7809, 
respectively, displaying marginal disparities. Conversely, E1 and E4 exhibit relatively low grades of 0.6360 and 0.6526, respectively. 
Notably, owing to inadequate consistency and information distribution surpassing threshold 1, the preference modification co-
efficients suppress the weight assigned to E1, signifying diminished weight allocation. However, the preference modification co-
efficients amplify the weights of E2, E3, and E4, for which information distribution falls below the threshold of 1. 

Subsequently, the ranking of attributes and alternatives under each attribute the experts have provided, along with the calculated 
preference modification coefficients and expert rankings, are incorporated into the decision-weight optimization model, as shown in 
Eq. (11). Fig. 2 illustrates the weight calculation results for experts, attributes, and alternatives (detailed results are available in 
Table E1). Among these attributes, the most critical factors are rapidity (C3) and robustness (C1) enhancement, with weights of 0.2947 
and 0.2252, respectively. Feasibility (C5), cost-effectiveness (C6), redundancy (C2), and resourcefulness enhancement (C4) follow 
closely, with weights of 0.1191, 0.1035, 0.0947, and 0.0936, respectively. Conversely, the weight for sustainability (C7) is relatively 
low at 0.0692. Therefore, within the decision-making process for emergency recovery plans, enhanced rapidity and robustness are 
important factors. Notably, the sustainability of emergency recovery plans has yet to receive adequate attention, with experts leaning 
more towards focusing on the attributes directly associated with emergency capacity enhancement. The results in Fig. 2 (c) reveal 
relatively high weights for A1, A5, A6, and A8, with A5 and A6 exhibiting similar weights. Consequently, there is a need to develop the 
partial-order-based dominance structure among plans further to differentiate between various plans, thereby enabling more reliable 
decision-making. 

Subsequently, a partial-order accumulation transformation is performed on the alternative weights according to Eq. (14). Table 3 
shows the results. 

The POCTS in binary matrix form is obtained according to Eq. (16), and the results are presented in Table F1. A Hasse diagram with 
the dominant hierarchy of alternatives is then generated by applying Proposition 2 to extract the dominant hierarchy and perform 
edge contraction operations using Eq. (18). The computational results are listed in Table F2. 

The results in Fig. 3 show that A1, A5, and A6 emerge as Pareto-optimal plans, whereas A8 does not. The core reason behind the 
status of A5 as a Pareto-optimal plan lies in its significant enhancement effects on rapidity and resourcefulness, coupled with its higher 
overall weight. Conversely, the strength of A6 lies in its outstanding performance in improving robustness and ability to compensate 
for its deficiency in rapidity compared with A5. A1 is a Pareto-optimal plan because of its absolute advantage in enhancing rapidity, 
which is the most critical attribute. However, A1 demonstrates significant divergence in overall weight consideration compared to A5 
and A6, which cautions against prioritization. Consequently, by recommending A5 and A6 as optimal choices, decision-makers may 
ultimately select either based on preference. In addition, A8 is deemed a suboptimal alternative to A5 and A6, whereas A10 is a 
suboptimal alternative to A1, A5, and A6, collectively. This indicates that, for scenarios in which A1, A5, or A6 cannot be feasibly 
implemented, a certain level of tolerance exists for the loss of effectiveness, allowing for a suitable suboptimal alternative to be 
selected. 

5. Model validation 

5.1. Sensitivity analysis 

5.1.1. Overall sensitivity results analysis 
Analyzing the sensitivity of the input data or parameters is a crucial numerical method for evaluating the effectiveness of MADM 

methods. This study uses expert preference consistency and information distribution to acquire expert rankings and adjust preferences 
to construct the hybrid DGRA-POPA model. Therefore, this study focuses on the sensitivity analysis of expert rankings. A total of 120 
sensitivity analysis experiments are conducted by completely permuting the rankings of the five experts. The sensitivity analysis 
outputs the results, including the weights of experts, attributes, and alternatives, and the frequency of becoming Pareto-optimal 

Table 3 
The partial-order cumulative transformation weights in the ERPS case study.   

WPOCT
i3 WPOCT

i1 WPOCT
i5 WPOCT

i6 WPOCT
i2 WPOCT

i4 WPOCT
i7 

A1  0.0636  0.0962  0.1011  0.1069  0.1212  0.1255  0.1288 
A2  0.0046  0.0138  0.0170  0.0205  0.0238  0.0281  0.0294 
A3  0.0171  0.0268  0.0312  0.0414  0.0476  0.0568  0.0607 
A4  0.0261  0.0334  0.0427  0.0528  0.0554  0.0715  0.0771 
A5  0.0584  0.0911  0.1112  0.1246  0.1462  0.1643  0.1763 
A6  0.0339  0.0980  0.1252  0.1433  0.1557  0.1626  0.1751 
A7  0.0272  0.0315  0.0443  0.0608  0.0662  0.0692  0.0787 
A8  0.0280  0.0649  0.0898  0.1091  0.1254  0.1358  0.1449 
A9  0.0056  0.0245  0.0265  0.0291  0.0302  0.0345  0.0402 
A10  0.0303  0.0397  0.0500  0.0540  0.0655  0.0824  0.0889  
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Fig.3. The Hasse diagram of the ERPS case study.  

Fig.4. Box plots of the computed weights.  
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alternatives in the Hasse diagram. Fig. 4 and Table 4 depict the box plots and descriptive statistics of the computed outcomes. 
The boxplot analysis of the expert weights (Fig. 4(a)) shows that the weights of E2, E3, and E5 are relatively concentrated and 

higher, whereas the weights of E1 and E4 exhibit lower and closer values. Specifically, the average weight of E5 is the highest at 
0.2234, followed by E2 and E3 with average weights of 0.2207 and 0.2170, respectively. In comparison, E4 and E1 exhibit lower 
average weights of 0.1720 and 0.1668, respectively. The extreme values of the expert weights demonstrate a distribution trend similar 
to the averages, whereby E2, E3, and E5 possess larger and closely situated extreme weights, whereas E1 and E4 have smaller and 
relatively closer extreme weights. Considering the preference modification coefficients, a consistent alignment can be observed be-
tween the distribution of expert weights, their respective rankings, and the preference modification coefficients of the experts. This 
phenomenon highlights the influential regulatory role of preference-modification coefficients in the context of complete permutations 
in expert rankings. 

The boxplot of attribute weights (Fig. 4(b)) shows that the weight distribution is within a reasonable range, that is, within 1.5 times 
the interquartile range (IQR) indicated by the whiskers of the boxplot. Regarding the average weight values, C3 has the highest average 
weight value at 0.2612. Subsequently, C1, C5, and C6 have average weights of 0.2029, 0.1570, and 0.1311, respectively. In contrast, 
the weights of C4, C2, and C7 are relatively low and similar, with values of 0.0920, 0.0841, and 0.0717, respectively. Regarding the 
variability of the weights, the coefficients of variation for C5 and C6 reached 0.1932 and 0.2456, respectively, exceeding the threshold 
of 0.15. This indicates that significant outliers exist in the weights of C5 and C6, suggesting that some experts may prefer these at-
tributes. Furthermore, the kurtosis of all the attribute weights is less than zero, indicating that the weight distribution is flatter and 
broader than a normal distribution, with a thinner tail and fewer extreme values. All attributes except C4 show positive skewness, 
indicating that the right tail of the weight distribution is longer and that most weight values are concentrated in the lower range. 
Among these, C1, C2, C5, and C6 exhibit prominent positive skewness characteristics, whereas the distributions of C3 and C7 are 
relatively symmetrical. 

Based on the analysis of the average weights of the alternatives, A5 has the highest average value of 0.1744, followed closely by A6 
with an average value of 0.1722. A8 and A1 rank third and fourth, with average weights of 0.1546 and 0.1090, respectively. The 
average weights of A4, A7, and A10 range between 0.0857 and 0.0883. The remaining three alternatives (A2, A3, and A9) have 
relatively lower weights. Concerning the coefficient of variation, all alternative weights had values less than 0.15, indicating that they 
fall within the normal range. The kurtosis of the alternative weights, similar to that of the attribute weights, displays a flatter char-
acteristic than a normal distribution. Notably, A5 and A10 exhibit negative skewness, whereas the other alternatives show positive 
skewness. This suggests that the weights of A5 and A10 are concentrated in the higher-value region, with fewer weights distributed 
towards the lower end. However, although A5 has a higher mean weight than A6, its greater volatility reduces its stability as the 
optimal choice. 

Furthermore, following the conventional practice of MADM, decision-makers often preferentially select A5, A6, and A8, in that 
order. However, the statistical analysis of the various experiments shows that A6 appears as the Pareto-optimal alternative 120 times, 
indicating its consistent selection as the Pareto-optimal alternative across all permutations of expert rankings. A5 closely follows with 
113 occurrences. This phenomenon aligns with the result that A6 exhibits greater weight stability than A5. Despite A8 ranking lower 
with only 32 occurrences, A1, which has significant differences in mean weight compared to A8, is the Pareto-optimal solution 34 
times. This suggests that while A8 may have a much higher average weight than A1, it often serves as a suboptimal choice compared to 

Table 4 
Descriptive statistics of the computed outcomes.   

Mean Max Min Standard 
deviation 

Variance Skewness Kurtosis Coefficient of 
variation 

Frequency of being Pareto 
optimal 

E1  0.1668  0.3647  0.0689  0.1061  0.0113  1.0710  − 0.3718  0.6361 − - 
E2  0.2207  0.3896  0.1291  0.0914  0.0084  0.9787  − 0.4959  0.4141 − - 
E3  0.2170  0.3877  0.1246  0.0924  0.0085  0.9817  − 0.4924  0.4258 − - 
E4  0.1720  0.3670  0.0739  0.1047  0.0110  1.0577  − 0.3905  0.6089 − - 
E5  0.2235  0.3907  0.1325  0.0906  0.0082  0.9768  − 0.4980  0.4055 − - 
C1  0.2029  0.2520  0.1595  0.0261  0.0007  0.3725  − 0.8723  0.1286 − - 
C2  0.0841  0.0965  0.0741  0.0065  0.0000  0.4353  − 1.0442  0.0768 − - 
C3  0.2612  0.3083  0.2115  0.0282  0.0008  0.0121  − 1.2003  0.1080 − - 
C4  0.0920  0.1025  0.0808  0.0060  0.0000  − 0.1112  − 0.9096  0.0648 − - 
C5  0.1570  0.2173  0.1161  0.0303  0.0009  0.7632  − 0.6722  0.1932 − - 
C6  0.1311  0.1938  0.0945  0.0322  0.0010  0.9732  − 0.4660  0.2456 − - 
C7  0.0717  0.0781  0.0657  0.0035  0.0000  0.0695  − 1.1128  0.0491 − - 
A1  0.1090  0.1288  0.0917  0.0103  0.0001  0.3378  − 0.9652  0.0947 34 
A2  0.0300  0.0322  0.0279  0.0012  0.0000  0.2368  − 0.8145  0.0395 0 
A3  0.0628  0.0686  0.0578  0.0031  0.0000  0.3199  − 1.0577  0.0486 0 
A4  0.0857  0.0982  0.0739  0.0067  0.0000  0.0938  − 1.1751  0.0784 0 
A5  0.1721  0.1845  0.1556  0.0082  0.0001  − 0.6007  − 0.7942  0.0478 114 
A6  0.1722  0.1818  0.1627  0.0052  0.0000  0.0678  − 0.9725  0.0302 120 
A7  0.0870  0.1039  0.0755  0.0086  0.0001  0.8478  − 0.5659  0.0986 0 
A8  0.1546  0.1674  0.1435  0.0068  0.0000  0.3405  − 0.7359  0.0437 32 
A9  0.0384  0.0418  0.0361  0.0017  0.0000  0.6104  − 0.8916  0.0438 0 
A10  0.0883  0.0942  0.0814  0.0036  0.0000  − 0.4378  − 0.8218  0.0407 0  
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A5 and A6, whereas A1 demonstrates advantages that A5 and A6 lack in specific contexts. This highlights the capability of the hybrid 
DGRA-POPA model to enhance decision stability and transparency through partial-order cumulation transformation and structured 
generation. 

5.1.2. Sensitivity results analysis of representative scenarios 
This section focuses on selecting representative sensitivity analysis scenarios for further explanation to enhance the credibility of 

the results. The representative scenarios encompass both similar and extremely inverse scenarios. The test of similar scenarios 
(denoted as ST) entails grouping proximate experts via preference modification coefficients, and arranging permutations of expert 
rankings within the same group to generate varied similar scenarios. This study specifically presents a sensitivity analysis of similar 
scenarios for expert groups E2, E3, and E5. Similar scenarios of expert rankings and their designations are illustrated in Table 5, and the 
corresponding results are shown in Fig. 5 and Table 6. 

From the expert weight results in Fig. 5(b), significant disparities in the weights of E2, E3, and E5 across different similar scenarios 
can be observed, while the weights for E1 and E4 remain relatively stable. Regarding the attribute weights and rankings (Fig. 5(a)), 
there is relative stability across different scenarios, with the attribute rankings of scenarios ST1, ST2, ST3, and ST4 aligning with the 
rankings in control scenario G. However, in scenario ST5, a reversal occurs in the rankings of C2 and C4. The alternative rankings 
(Fig. 5(c)) exhibit relative stability across similar scenarios, whereas the rankings of A1, A2, A3, A8, A9, and A10 remain consistent. 
The focal point of contention in the alternative rankings is related to A5 and A6. In scenarios ST1 and ST2, in contrast to control 
scenario G, the rankings of A5 and A6 are reversed primarily because of a decrease in the weight of C3 and an increase in C1 compared 
with control scenario G. In the case study, the advantage of A5 over A6 lies primarily in C3, whereas the advantage of A6 lies in C1, 
which is in accordance with the reverse ranking of A5 and A6. Furthermore, Table 6 shows that, within the Hasse diagram across all 
similar scenarios, both A5 and A6 are identified as Pareto-optimal alternatives. Thus, the sensitivity analysis results in similar scenarios 
indicate the stability of the outcomes of the proposed hybrid DGRA-POPA model. 

The extreme inverse scenario (denoted as ET) represents an extreme case in which expert rankings are entirely inverted compared 
with the control scenario, indicating the highest degree of disturbance in expert ranking. Thus, in the extreme inverse scenario, the 
expert ranking stands for (1, 4, 3, 2, 5), and the results are depicted in Figs. 6 and 7. 

Based on the results shown in Fig. 6(a), notable disparities exist when the expert weights between the extreme inverse scenarios are 
compared. However, because of the impact of the preference modification coefficient, the maximum variance in expert weights in the 
extreme inverse scenario (0.2292) is less than that in the control scenario (0.3162). Regarding the attribute weights (Fig. 6(b)), C2, C4, 
and C7 demonstrate marginal discrepancies between the extreme inverse and control scenarios. Nevertheless, a reversal can be 
observed in the ranking of the weights for C1, C5, C2, and C4. Similarly, the effect of the preference modification coefficient reduces 
the discrepancies in the attribute weights in the extreme inverse scenario. Regarding the alternative ranking (Fig. 6(c)), A5, A6, and A8 
remain the top three; however, A1 has dropped in rank from fourth to sixth. Based on an analysis of the extreme inverse scenario’s 
partial-order-based dominance structure, the Pareto-optimal alternative has clearly shifted from the original A1, A5, and A6 to A5, A6, 
and A8, with A1 becoming a suboptimal alternative to A5. A8 emerges as the Pareto-optimal alternative because of its notable per-
formance in C5 and the increased weight of C5 in the extreme inverse scenario, compensating for its gap with A5 and A6 in C6. The 
descent of A1 to become a suboptimal alternative to A5 arises from a significant decrease in the weights of E2 and E5, which previously 
considered A1 to excel in C3, leading to the inferior performance of A1 in C3 compared to A5 in the extreme inverse scenario. 

Notably, whether in similar or extreme inverse scenarios, both A5 and A6 can emerge as Pareto-optimal alternatives through the 
generated Hasse diagram despite the potential for reversals in weight-based total-order rankings. In addition, the preference modi-
fication coefficients effectively modulate and diminish the differences in the weight outcomes under extreme disturbances. Conse-
quently, sensitivity analyses across similar and extreme inverse scenarios suggest that the proposed hybrid DGRA-POPA model is 
stable. 

5.2. Comparison analysis 

To conduct a comparative analysis of the hybrid DGRA-POPA model, first, the expert weight results of the proposed approach are 
compared with those of the original OPA model. The relevance of this comparison reflects the proposed approach, which improves the 
decision-weight optimization of the original OPA model by integrating expert consensus and information distribution. Mirroring the 
sensitivity analysis, the comparison analysis is conducted with complete permutation operations on the expert rankings within the 
original OPA model, generating 120 distinct experimental scenarios. Fig. 8 shows the results for the expert weights. 

For the original OPA model, the computed expert weights display an interesting phenomenon. Specifically, the statistical indicators 
of the five experts’ weights are entirely consistent, with an average value of 0.2. These findings are attributed to the expert weight 
allocation of the original OPA model, which is based on the experts’ rankings only. This study adopts a comprehensive permutation 

Table 5 
The designations and expert rankings of similar scenarios.   

G ST1 ST2 ST3 ST4 ST5 

Expert 
ranking 

(5,2,3,4,1) (5,1,2,4,3) (5,1,3,4,2) (5,2,1,4,3) (5,3,1,4,2) (5,3,2,4,1)

Note: G denotes the control group, which is same expert ranking with the case study section.  
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ranking technique, creating uniform chances and occurrences for each expert across all rankings and leading to the equalization of the 
average weights among experts. However, in the proposed approach, expert weights are not fixed but exhibit fluctuations around the 
reference value of 0.2. Specifically, the mean weights of E2, E3, and E5 are higher than 0.2, which is directly related to their relatively 
high preference-correction coefficients. This indicates that the hybrid DGRA-POPA model can effectively capture and reflect individual 
differences in decision-making by introducing preference modification coefficients, thereby achieving more refined weight 
adjustments. 

In this section, the alternative ranking results of the proposed approach based on the case scenarios are compared with those of 
other MADM methods. OPA, TOPSIS, VIKOR, TODIM, COPRAS, CARDIS, MOORA, MABAC, MAIRCA, and MARCOS are selected as the 
representative benchmarking methods. Notably, the most effective method for demonstrating the validity of the results of the proposed 
approach is to examine whether the ranking outcomes are reversed compared with the original OPA model, as both take ranking data 
as input. However, the rationale for choosing other methods is because of their status as prevalent benchmarks in MADM and their 
frequent application in ERPS research. These methods rely on decision matrices as input data and require attribute weights to be 
acquired beforehand. Making comparisons using these methods allows for a broader generalization of the analysis and underscores the 
advantages of the proposed approach in simultaneously determining the weights for experts, attributes, and alternatives. 

As for the initial input of the comparison analysis, OPA utilizes expert-provided rankings of attributes and alternatives under each 
attribute (Tables E1 and E2) and expert rankings based on dynamic grey relational degrees as input data. For other MADM methods 
that utilize decision matrices as inputs, WAC as derived from the proposed approach is decomposed into attribute weights and utilities 

Fig.5. The weight calculation results of the similar scenarios.  

Table 6 
The Pareto-optimal and suboptimal alternatives of similar scenarios.   

Intersection of 
all scenario 

G ST1 ST2 ST3 ST4 ST5 

Pareto optimal alternative A5, A6 A1 − - A1 − - − - − - 
Suboptimal alternative A8 A7, A10 A1 A7, A10 A1 A1 A1  
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of alternatives across attributes (i.e., WAC
ij = WC

j × VAC
ij ). The rationality of this decomposition stems from WAC representing the 

consolidated expert opinions on alternative weights across various attributes with a total weight equal to one. Therefore, extracting the 
attribute weights calculated in the proposed approach allows the utility of each alternative to be determined for the respective at-
tributes. As discussed above, Table 7 is then utilized as input for the other MADM methods. However, soliciting new decision data from 
experts introduces additional decision information and increases the uncertainty and cost implications. In contrast, the proposed 

Fig.6. The weight calculation results of the extreme inverse scenario.  

Fig.7. Hasse diagram of the extreme inverse scenario.  
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approach endeavors to achieve relatively stable decision outcomes using minimal decision information (i.e., ranking data) in highly 
uncertain ERPS scenarios. 

Fig. 9 illustrates the ranking outcomes of the alternatives using different methods. The specific rankings of the top four alternatives 

Fig.8. Box plots of computed expert weights.  

Table 7 
Decision data for the MADM methods using a decision matrix.   

C1 C2 C3 C4 C5 C6 C7 

A1  0.2826  1.0157  0.3431  1.1425  1.0178  1.2131  1.8607 
A2  0.0205  0.1462  0.0576  0.2187  0.1999  0.2718  0.4241 
A3  0.0757  0.2826  0.1060  0.4429  0.3996  0.5490  0.8764 
A4  0.1157  0.3532  0.1450  0.5643  0.4657  0.6912  1.1137 
A5  0.2591  0.9618  0.3772  1.3317  1.2279  1.5880  2.5468 
A6  0.1505  1.0346  0.4248  1.5317  1.3079  1.5714  2.5303 
A7  0.1209  0.3331  0.1504  0.6495  0.5562  0.6685  1.1365 
A8  0.1242  0.6857  0.3046  1.1665  1.0530  1.3129  2.0940 
A9  0.0248  0.2592  0.0899  0.3112  0.2538  0.3337  0.5801 
A10  0.1345  0.4190  0.1697  0.5769  0.5500  0.7966  1.2841 
Attribute 

weight  
0.2252  0.0947  0.2947  0.0936  0.1191  0.1035  0.0692  

Fig.9. Ranking results of multiple MADM methods.  
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(A1, A5, A6, and A8) exhibit divergence. Methods excluding VIKOR, TODIM, and MABAC rank A5 first and A6 second. Conversely, 
TODIM and MABAC assign first place to A6, while A5 is in second place. VIKOR positions A5 first, A1 second, and A6 third. As for A1 
and A8, the proposed approach aligns with OPA, placing A1 third and A8 fourth. Except for VIKOR, the other methods rank A1 fourth 
and A8 third. These outcomes are effectively resolved within the dominance hierarchy of the proposed approach, as A1, A5, and A6 
occupy the first layer, indicating they are Pareto-optimal solutions. This aligns with the sensitivity analysis findings, wherein the 
average weight of A8 substantially exceeds that of A1, although without a significant difference in how frequently they are Pareto- 
optimal solutions. However, the original OPA model cannot provide such insights. Thus, the analysis validates the effectiveness 
and stability of the proposed approach for ERPS. 

6. Discussion 

6.1. Managerial implications for emergency recovery plan selection 

This section discusses the managerial implications, where A5 and A6 emerge as Pareto-optimal solutions in the case study, serving 
as references for other ERPS decision-makers. The emergency recovery enhancement measures of A6 include establishing a joint 
medical rescue center, creating an emergency information-sharing platform, setting up a unified emergency command center, 
developing an emergency collaboration mechanism, and conducting regular drills and simulations. Compared with that of A5, 
implementing the emergency recovery plan of A6 is expected to significantly improve the emergency response system’s redundancy, 
speed, and resource availability, as reflected in three main aspects. First, by establishing joint medical rescue and emergency command 
centers, the plan effectively integrates and optimizes existing resources, and builds a more robust emergency response system. This 
provides more alternative solutions and resources in the event of emergencies but also significantly enhances system redundancy, 
ensuring that sufficient resources are available at critical moments. Second, creating an emergency information-sharing platform 
ensures the rapid circulation of crucial information, significantly reducing delays in information transmission. The operation of the 
joint command center further achieves quick dispatching and decision-making regarding emergency resources, thus significantly 
accelerating the overall response. Finally, through cross-departmental and cross-regional collaboration mechanisms, the plan effec-
tively breaks down existing information silos and resource barriers, thereby achieving efficient resource sharing and utilization. 
Regular drills and simulations continue to optimize resource allocation, ensuring the rapid mobilization of necessary resources in 
emergencies and improving resource availability. 

Regarding A5, its measures primarily include developing effective casualty evacuation plans, enhancing emergency record man-
agement systems, formulating policies and operational standards for emergency command transitions, establishing emergency 
collaboration mechanisms, and conducting regular drills and simulations. Compared to A6, this plan excels in economic efficiency, 
sustainability, and enhanced robustness of future emergency capabilities. Economically, although initial investments are required for 
system development, personnel training, and resource integration, measures such as implementing effective casualty evacuation plans 
and strengthening emergency record management systems can significantly reduce additional losses due to the mishandling of 
emergencies, thereby saving costs and maximizing benefits. Moreover, by establishing emergency collaboration mechanisms and 
transparent policies for emergency command transitions, the plan promotes the effective integration of cross-departmental and cross- 
regional resources, prevents resource duplication and waste, and enhances resource utilization efficiency, thereby reducing overall 
operational costs. Regarding sustainability, the plan provides a solid institutional guarantee for emergency management through 
institutionalized and standardized measures, such as formulating policies and operational standards for emergency command tran-
sitions, establishing long-term emergency collaboration mechanisms, and ensuring emergency measure continuity and stability. 
Regular drills and simulations help test and refine existing emergency plans while increasing an organization’s adaptability and 
flexibility to new situations. This will ensure that emergency management systems can continuously adapt to future changes and 
challenges. Collectively, these measures enhance the speed and efficiency of emergency response, strengthen an organization’s 
capability to handle diverse emergencies and improve the robustness of emergency management systems, ensuring an efficient and 
effective response to various uncertainties. 

6.2. Advantages of and insights from the proposed approach 

Currently, MADM methods are primarily categorized into two types: (1) weighting methods such as AHP, Entropy, FUCOM, LBWA, 
BWM, and DEMATEL, and (2) ranking methods, including TOPSIS, TODIM, ELECTRE, PROMETHEE, COPRAS, CARDIS, MOORA, 
MABAC, MAIRCA, and MARCOS. The hybrid DGRA-POPA model proposed in this study reflects a comprehensive MADM approach. 
Unlike traditional weighting methods that calculate weights for experts, attributes, and alternatives for ranking separately, the pro-
posed approach concurrently determines the weights for experts, attributes, and alternatives without requiring any pre-obtained 
weights, thereby offering a distinct advantage over conventional ranking methods. 

Furthermore, compared with methods that use pairwise comparison values (e.g., AHP, BWM, DEMATEL, and FUCOM) and those 
that utilize decision matrices (e.g., TOPSIS, TODIM, MOORA, MABAC, and MARCOS), the proposed approach relies on easily 
obtainable and stable ranking data as the decision-making basis. This is particularly pertinent in the ERPS domain on which this study 
focuses, where ranking data offer an effective strategy for managing uncertainty when facing poor quality or inaccessible decision 
matrices. Additionally, the proposed approach does not require any data normalization techniques, which often directly affect the 
computational results of methods based on decision matrices. Compared to pairwise comparisons, acquiring ranking data is more 
straightforward, requiring answers to “which is better” rather than “by how much,” significantly reducing the costs and time associated 
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with collecting decision data. 
This study crucially incorporates expert consensus and Pareto-optimality analysis into the proposed approach. DGRA is applied to 

extract an expert consensus. Furthermore, the original OPA model is utilized to derive a preference modification coefficient based on 
expert consensus and information distribution, which is then integrated into the decision weight optimization model. Notably, the 
method for expert consensus extraction is not limited to DGRA; any expert consensus measurement within the range of (0,1) and 
characterized as a benefit attribute can be adjusted using the proposed modification operation, as derived from Theorem 1. This study 
validates these findings through sensitivity and comparative analyses with the weight results of the original OPA model. Furthermore, 
this study utilizes a partial-order cumulative transformation and a structured generation method for the decision-weight optimization 
model to identify potential Pareto-optimal alternatives. This demonstrates the order-preserving nature of partial-order cumulative 
transformation and its relationship with the partial-order set based on strict Pareto optimality and the total-order set based on a single 
projected comprehensive attribute. Thus, the model theoretically demonstrates that partial-order cumulative transformation can 
enhance the stability and robustness of decision outcomes. This study also proposes a Hasse diagram with hierarchical clustering, 
which effectively improves decision robustness and transparency. The results are validated based on sensitivity and comparative 
analyses. Therefore, analyzing potential Pareto-optimal alternatives in MADM enhances decision transparency, stability, and 
robustness, which current MADM methods often overlook. Additionally, the partial-order cumulative transformation and structural 
generation provided in this study can offer insights into portfolio selection problems in decision-making through Pareto-optimal al-
ternatives, suboptimal alternatives, and clustering information. 

Overall, the hybrid DGRA-POPA model offers the following advantages:  

(1) It utilizes readily accessible and stable ranking data as inputs for the model.  
(2) It obviates the need for any data normalization and weight pre-acquisition techniques.  
(3) It introduces a decision-weight optimization model that considers expert consensus and information distribution.  
(4) It identifies potential Pareto-optimal solutions in decision-making through partial-order cumulative transformation and 

structural generation. 

However, different MADM methods have relative advantages in terms of their applicability. The hybrid DGRA-POPA model is more 
suitable for situations with high uncertainty and a lack of reliable decision data. When decision-makers are confident in the pairwise 
comparison values and decision matrices experts provide, MADM methods that fully reflect relative dominance and distance are 
recommended. In cases where decision-makers face a wealth of accurate decision data, big-data-driven decision-making methods are 
recommended to obtain more precise outcomes. 

7. Conclusion 

In today’s high-risk society, selecting emergency recovery plans is crucial, as it effectively mitigates the potential negative effects of 
unforeseen events, thus ensuring the resilience and capacity of society to cope with extreme weather disasters, terrorist attacks, and 
infectious diseases. However, in selecting strategies in the future, appropriate emergency recovery plans often encounter uncertainties 
regarding the long-term performance of attributes and require engagement from multiple stakeholders. Consequently, when deter-
mining these plans, addressing uncertainties and instabilities in the assessment process and aligning the consensus with discrepancies 
among multiple stakeholders becomes a key challenge. Therefore, this study proposes a hybrid DGRA-POPA model for ERPS that 
utilizes DGRA to extract a more accurate consensus from expert preferences regarding attributes and subsequently provides a reference 
for expert ranking. Preference modification coefficients are derived based on the consensus among the expert group and its information 
distribution characteristics are integrated into POPA. Ultimately, the modified POPA applies decision-weight optimization modeling, 
partial-order cumulative transformation, and structural generation to determine weights for experts, attributes, and alternatives, and 
establish a Hasse diagram of alternatives. This diagram offers insights into Pareto-optimal alternatives, suboptimal alternatives, and 
hierarchical clustering information. Thus, this study provides an illustrative application of the proposed approach to the selection of 
post-disaster emergency recovery enhancement plans for the Manchester Stadium attack. The hybrid DGRA-POPA model is validated 
through a sensitivity analysis of expert rankings and comparative analysis with 10 traditional MADM methods, demonstrating sta-
bility, robustness, and transparency in decision-making, while proving its effectiveness and reliability in addressing complex decision- 
making issues. 

The primary contribution of this study is the introduction of the hybrid DGRA-POPA model, which effectively addresses the 
challenge of ERPS by considering expert consensus, information distribution, and potential Pareto-optimal alternatives. The proposed 
approach fills the gaps in considering expert consensus and Pareto-optimal alternatives in the original OPA model. The proposed 
approach relies on readily available and stable ranking data, simplifies data collection, and reduces time and costs. Through DGRA, the 
proposed approach extracts an expert consensus and then derives preference modification coefficients based on the original OPA 
model to enhance decision accuracy by incorporating expert opinion consistency. By integrating the weight determination and ranking 
processes, the proposed approach efficiently calculates the weights of the experts, attributes, and alternatives, thereby improving 
efficiency and consistency in the decision-making process. Furthermore, the proposed approach enhances the stability, robustness, and 
transparency of decision outcomes when identifying potential Pareto-optimal alternatives through partial-order cumulative trans-
formation and Hasse diagram generation. Through theoretical analysis, insights are provided into integrating expert consensus and 
Pareto-optimal solution analysis into the original OPA model for MADM. 

Finally, the results and conclusions were obtained within a limited context. Hence, further applications in various scenarios are 
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required to validate their efficacy. Based on this study, future research could explore some critical areas in-depth. First, the integration 
of distance information into decision-weight optimization models based on the original OPA model deserves attention. Existing de-
cision weight optimization methods rely on ranking data, which can only reflect relative superiority or inferiority without quantifying 
the degree of difference. This limitation indicates that the original OPA model fails to fully consider the potential distance information 
in the ranking data. Hence, integrating distance information into ranking data to improve the performance of decision-weight opti-
mization models is an important direction for future research. However, although such integration methods improve the accuracy of 
decision results, they also impose higher requirements on the acquisition of decision data, potentially introducing more significant 
uncertainty and decision costs. Thus, future research could explore the utilization of social network analysis methods to characterize 
the opinions of a large expert pool, aiming to reveal consensus and divergence more accurately. In this process, considering the scale 
effects related to expert consensus and divergence may result in the construction of a complex social network consisting of positive 
(representing consensus) and negative (representing divergence) values, posing new challenges to the measurement of expert 
importance. Finally, the proposed approach is based on a critical assumption: the independence of the attributes. Given the potential 
correlations and interactions among attributes in the real world, future studies should consider the influence of these factors. 
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Appendix A 

The weight calculation in this study is primarily based on the modifications made to the original OPA model, which incorporates 
factors of expert consensus and information distribution. This section provides an introduction to the original OPA model, and its 
indices, sets, parameters, and variables are shown in Table A1.  

Table A1 
Notation definition of OPA.  

Type Notion Definition 

Index i Index of alternatives (1,…, i,…,m)

j Index of attributes (1,…, j,…,n)
k Index of experts (1,…,k,…,p)

Parameter rek Ranking of the expert k 
rcjk Ranking of the attribute j under the preferences of the expert k 
raijk Ranking of the alternative i for the attribute j under the preferences of the expert k 

Set A Set of alternatives A = {1,2,…, i,…,m}

C Set of attributes C = {1,2,…, j,…,n}
E Set of experts E = {1,2,…,k,…,p}

Variable Z Objective function 
Wra

ijk Weight of the alternative i for the attribute j of the ranking raijk under the preferences of the expert k  

Based on the identified attributes, experts, and alternatives, the decision maker initially assigns the ranking rek to experts. Sub-
sequently, each expert independently provides the ranking for each attribute rcjk and the ranking for each alternative under each 
attribute raijk. Utilizing the collected data, linear optimization model of OPA is formed to determine the weight Wra

ijk of the alternative i 
for the attribute j of the ranking raijk under the preferences of the expert k. 
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After solving Eq.(B1), the weight of alternatives, attributes, and experts is calculated according to Eq.(B2). 
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Appendix B 

Proof of Theorem 2. Denote the lower set of i1 ∈ A on (A,≼AC) and (A,≼POCT) as A−
i1 ,AC = {i2|i2≼ACi1, i2 ∈ A} and 

A−
i1 ,POCT = {i2|i2≼POCTi1, i2 ∈ A}, respectively. For ∀i2 ∈ A−

i1 ,AC, there exists i2≼ACi1 ⇔ WAC
i2 j ⩽WAC

i1 j ,∀j. It follows that 
∑l

j=1WAC
i2 j ⩽

∑l
j=1WAC

i1 j , l ∈ [n], such that i2 ∈ A−
i1 ,POCT, which implies that A−

i1 ,AC ⊆ A−
i1 ,POCT. By Definition 5, (A,≼AC) ⊆ (A,≼POCT) holds. 

Theorem 2 is proved. 

Proof of Theorem 3. Prove by mathematical induction. Given ai1 ≼ai2 , it is evident that 
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Thus, when r = n, there exists 
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Based on the given premise that WAC
i2 j1 − WAC

i1 j1 + ⋯ + WAC
i2 jn − WAC

i1 jn ⩾0, it follows that 
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(C7) 

Thus, WPOCT
i1 j ⩽WPOCT

i2 j holds. Theorem 3 is proved. 
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Appendix C  

Table C1 
Emergency recovery plan of Manchester Stadium attack.  

Improvement 
perspective 

Sub-plan A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

Healthcare 
management 

Establishing a joint medical rescue center √ √ − - − - − - √ − - √ − - √ 
Procuring medical equipment − - − - √ − - − - − - − - − - √ − - 
Establishing a medical equipment sharing program − - − - − - √ − - − - √ − - √ − - 
Developing an effective casualty transfer plan − - − - − - − - √ − - √ − - − - − - 

Information 
management 

Enhancing emergency record management systems − - √ √ √ √ − - − - √ √ √ 
Creating an emergency information sharing platform √ √ − - √ − - √ √ − - − - − - 

Organization and 
procedure 
management 

Establishing a joint emergency command center − - − - − - − - − - √ √ − - − - − - 
Developing collaborative mechanisms for emergency response √ − - − - − - √ √ − - − - − - − - 
Clarifying responsibilities of emergency organization members − - − - √ − - − - − - − - − - − - √ 
Developing policies and operational standards for emergency 
command handover 

√ − - √ − - √ − - − - − - − - − - 

Standardizing emergency service protocols − - − - − - √ − - − - − - √ √ √ 
Reviewing and improving major emergency response plans − - √ − - − - − - − - − - √ − - − - 

Personnel training Strengthening professional training for personnel √ − - √ √ − - − - − - √ √ √ 
Conducting regular drills and simulations − - √ − - − - √ √ √ − - − - − -  

Appendix D  

Table D1 
Rankings of the attributes given by experts.  

Expert ID C1 C2 C3 C4 C5 C6 C7 

E1 6 7 2 4 1 3 5 
E2 1 6 2 5 3 7 4 
E3 2 4 1 3 5 6 7 
E4 3 6 4 7 2 1 5 
E5 2 3 1 4 6 5 7   

Table D2 
Rankings of the plans under each attribute given by experts.  

Expert ID Plan ID C1 C2 C3 C4 C5 C6 C7 

E1 A1 2 6 7 4 8 10 6 
A2 9 9 10 8 9 3 7 
A3 8 7 9 2 6 4 2 
A4 5 8 4 3 5 1 3 
A5 4 4 3 1 7 2 8 
A6 1 1 5 7 2 5 9 
A7 10 2 1 10 3 7 1 
A8 3 3 6 9 1 6 10 
A9 6 10 8 6 10 8 4 
A10 7 5 2 5 4 9 5 

E2 A1 4 5 1 10 7 6 8 
A2 8 9 10 4 9 10 10 
A3 6 7 9 2 10 7 7 
A4 9 8 6 3 6 8 6 
A5 3 4 4 1 1 4 5 
A6 1 1 7 8 3 1 1 
A7 10 6 3 9 4 2 3 
A8 2 2 5 6 2 3 2 
A9 5 10 8 7 8 9 9 
A10 7 3 2 5 5 5 4 

E3 A1 3 1 7 5 7 5 9 
A2 9 9 10 8 6 8 8 
A3 10 7 3 9 8 9 6 
A4 8 8 2 3 4 10 7 

(continued on next page) 
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Table D2 (continued ) 

Expert ID Plan ID C1 C2 C3 C4 C5 C6 C7 

A5 4 2 1 2 3 3 2 
A6 1 3 5 7 1 1 3 
A7 7 5 8 6 5 4 4 
A8 2 4 6 1 2 2 1 
A9 5 10 9 10 10 7 10 
A10 6 6 4 4 9 6 5 

E4 A1 4 1 3 10 7 7 10 
A2 9 9 10 3 9 8 9 
A3 8 10 8 5 8 6 6 
A4 10 7 9 1 5 4 7 
A5 1 2 5 6 2 2 2 
A6 3 4 1 4 1 3 4 
A7 6 6 4 9 6 5 1 
A8 2 3 2 8 3 1 5 
A9 5 8 7 7 10 9 8 
A10 7 5 6 2 4 10 3 

E5 A1 2 4 1 8 8 6 5 
A2 6 7 9 10 9 10 10 
A3 8 5 8 5 7 2 9 
A4 7 9 7 2 6 5 4 
A5 3 1 2 3 3 8 1 
A6 1 6 3 4 1 3 3 
A7 10 8 5 9 4 1 7 
A8 4 2 4 7 2 4 8 
A9 5 10 10 6 10 9 2 
A10 9 3 6 1 5 7 6  

Appendix E  

Table E1 
Weight calculation results of the case ERPS.    

C1 C2 C3 C4 C5 C6 C7 

E1 A1  0.0009  0.0003  0.0007  0.0008  0.0010  0.0001  0.0004 
A2  0.0001  0.0001  0.0001  0.0002  0.0006  0.0013  0.0003 
A3  0.0002  0.0002  0.0003  0.0014  0.0018  0.0010  0.0011 
A4  0.0004  0.0001  0.0016  0.0010  0.0024  0.0028  0.0008 
A5  0.0005  0.0004  0.0020  0.0021  0.0014  0.0018  0.0002 
A6  0.0014  0.0012  0.0012  0.0003  0.0055  0.0008  0.0001 
A7  0.0000  0.0008  0.0041  0.0001  0.0040  0.0005  0.0017 
A8  0.0007  0.0006  0.0009  0.0001  0.0083  0.0006  0.0001 
A9  0.0003  0.0000  0.0005  0.0005  0.0003  0.0003  0.0006 
A10  0.0002  0.0003  0.0027  0.0006  0.0031  0.0002  0.0005 

E2 A1  0.0106  0.0014  0.0141  0.0002  0.0015  0.0009  0.0008 
A2  0.0032  0.0003  0.0005  0.0021  0.0007  0.0001  0.0002 
A3  0.0062  0.0008  0.0010  0.0037  0.0003  0.0007  0.0012 
A4  0.0020  0.0005  0.0031  0.0028  0.0021  0.0005  0.0016 
A5  0.0138  0.0018  0.0053  0.0056  0.0094  0.0015  0.0020 
A6  0.0282  0.0047  0.0023  0.0006  0.0046  0.0040  0.0071 
A7  0.0010  0.0010  0.0069  0.0004  0.0035  0.0027  0.0034 
A8  0.0186  0.0031  0.0041  0.0012  0.0062  0.0020  0.0046 
A9  0.0082  0.0002  0.0016  0.0009  0.0011  0.0003  0.0005 
A10  0.0046  0.0023  0.0093  0.0016  0.0027  0.0012  0.0026 

E3 A1  0.0052  0.0053  0.0035  0.0020  0.0007  0.0010  0.0002 
A2  0.0008  0.0004  0.0007  0.0008  0.0009  0.0004  0.0003 
A3  0.0004  0.0009  0.0104  0.0005  0.0005  0.0003  0.0007 
A4  0.0012  0.0006  0.0140  0.0035  0.0016  0.0001  0.0005 
A5  0.0040  0.0035  0.0213  0.0047  0.0021  0.0017  0.0020 
A6  0.0106  0.0026  0.0061  0.0012  0.0043  0.0035  0.0015 
A7  0.0017  0.0015  0.0024  0.0016  0.0012  0.0013  0.0011 
A8  0.0070  0.0020  0.0047  0.0071  0.0028  0.0023  0.0030 
A9  0.0031  0.0002  0.0015  0.0002  0.0001  0.0006  0.0001 
A10  0.0023  0.0012  0.0080  0.0027  0.0003  0.0008  0.0009 

E4 A1  0.0014  0.0019  0.0014  0.0001  0.0009  0.0018  0.0001 
A2  0.0003  0.0001  0.0001  0.0008  0.0004  0.0013  0.0002 
A3  0.0004  0.0001  0.0003  0.0005  0.0006  0.0025  0.0005 

(continued on next page) 
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Table E1 (continued )   

C1 C2 C3 C4 C5 C6 C7 

A4  0.0001  0.0003  0.0002  0.0016  0.0016  0.0042  0.0004 
A5  0.0037  0.0012  0.0008  0.0004  0.0037  0.0073  0.0015 
A6  0.0018  0.0007  0.0028  0.0006  0.0056  0.0054  0.0008 
A7  0.0008  0.0004  0.0010  0.0001  0.0012  0.0032  0.0022 
A8  0.0024  0.0009  0.0018  0.0002  0.0027  0.0112  0.0006 
A9  0.0011  0.0002  0.0005  0.0003  0.0002  0.0008  0.0003 
A10  0.0006  0.0005  0.0006  0.0010  0.0021  0.0004  0.0011 

E5 A1  0.0145  0.0055  0.0440  0.0013  0.0008  0.0019  0.0018 
A2  0.0049  0.0024  0.0032  0.0004  0.0005  0.0003  0.0002 
A3  0.0025  0.0042  0.0051  0.0032  0.0012  0.0058  0.0005 
A4  0.0036  0.0011  0.0072  0.0072  0.0016  0.0025  0.0024 
A5  0.0107  0.0147  0.0290  0.0054  0.0036  0.0010  0.0063 
A6  0.0220  0.0032  0.0215  0.0041  0.0073  0.0043  0.0031 
A7  0.0008  0.0017  0.0127  0.0008  0.0027  0.0088  0.0010 
A8  0.0082  0.0097  0.0165  0.0018  0.0048  0.0033  0.0007 
A9  0.0064  0.0005  0.0015  0.0024  0.0003  0.0006  0.0041 
A10  0.0016  0.0072  0.0097  0.0110  0.0021  0.0014  0.0014  

Appendix F  

Table F1 
The POCTS in binary matrix form of the case ERPS.   

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

A1 0 1 1 1 0 0 1 0 1 1 
A2 0 0 0 0 0 0 0 0 0 0 
A3 0 1 0 0 0 0 0 0 1 0 
A4 0 1 1 0 0 0 0 0 1 0 
A5 0 1 1 1 0 0 1 1 1 1 
A6 0 1 1 1 0 0 1 1 1 1 
A7 0 1 1 0 0 0 0 0 1 0 
A8 0 1 1 1 0 0 1 0 1 0 
A9 0 1 0 0 0 0 0 0 0 0 
A10 0 1 1 1 0 0 0 0 1 0   

Table F2 
The general skeleton matrix of the case ERPS.   

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

A1 0 0 0 0 0 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 1 0 
A3 0 0 0 1 0 0 1 0 0 0 
A4 0 0 0 0 0 0 0 1 0 1 
A5 0 0 0 0 0 0 0 0 0 0 
A6 0 0 0 0 0 0 0 0 0 0 
A7 1 0 0 0 0 0 0 1 0 0 
A8 0 0 0 0 1 1 0 0 0 0 
A9 0 0 1 0 0 0 0 0 0 0 
A10 1 0 0 0 1 1 0 0 0 0  
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